Problem 1

We form the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$, and we show that it is covergent using the ratio test.
$\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\frac{|x|}{n+1} \rightarrow 0<1 \quad$ with $x \in(-\infty,+\infty)$
Therefore, since the series is convergent we have: $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{x^{n}}{\mathrm{n}!}=0$

Problem 2

$\lim _{n \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} n^{c} \sin \frac{1}{n^{c}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{\sin \frac{1}{n^{c}}}{\frac{1}{n^{c}}} \rightarrow\{$ Apply L'Hopital's rule $\}$
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{\left\{-c \frac{1}{n^{c+1}}\right\} \cos \frac{1}{n^{c}}}{\left\{-c \frac{1}{n^{c+1}}\right\}}=\lim _{\mathrm{n} \rightarrow \infty} \cos \frac{1}{n^{c}}=1, \Rightarrow$ series is divergent!

* In a strict sense when you apply L'Hopital's rule rule you must set $\mathrm{n} \rightarrow \mathrm{x} . .$. etc.

Problem 3

If $a_{n}=n!(2 x-1)^{n}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(2 x-1)^{n+1}}{n!(2 x-1)^{n}}\right|=\lim _{n \rightarrow \infty}(n+1)|2 x-1| \rightarrow \infty$ as $n \rightarrow \infty$
for all $x \neq \frac{1}{2} . \quad$ (a) Convergent for $x=1 / 2$
(b) Divergent for $x \neq 1 / 2$

Problem 4 Because $|\mathrm{x}|,|\mathrm{y}|<|\mathrm{w}|$ the series below are convergent geometric series. Thus we have:

$$
\sum_{n=0}^{\infty} x^{n} / w^{n}=\frac{1}{1-(x / w)} \quad \sum_{n=0}^{\infty} y^{n} / w^{n}=\frac{1}{1-(y / w)}
$$

The sume of these two convergent series is also convergent so we have:
$\frac{1}{1-(x / w)}+\frac{1}{1-(y / w)}=\left\{\sum_{n=0}^{\infty}\left[x^{n}\right] / w^{n}\right\}+\left\{\sum_{n=0}^{\infty}\left[y^{n}\right] / w^{n}\right\}=\sum_{n=0}^{\infty}\left[x^{n}+y^{n}\right] / w^{n} \Rightarrow \sum_{n=0}^{\infty}\left[x^{n}+y^{n}\right] / w^{n}=\frac{1}{1-(x / w)}+\frac{1}{1-(y / w)}$

Problem 5

We look for a particular solution of the form: $\quad x_{p}(t)=\mathrm{A} \cos (\omega t)+\mathrm{B} \sin (\omega t)$
Look in Nestor the general solution of the AFM-equation of motion with $\omega=\omega_{0}$.: *
since $\omega=\omega_{o}$ (and as a result $k-m \omega^{2}=0$) we obtain after substition
into the equation of motion : $c \omega \mathrm{~B}=\mathrm{F}_{0}$ and $\mathrm{A}=0 \quad \Rightarrow x_{p}(t)=\left(\frac{F_{0}}{c \omega}\right) \sin (\omega t)$
*see next page:

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+H x=F_{0} \cos \omega_{0} t \\
& x_{p}(t)=A\left(w_{0}\right) \cos \left(w_{0} t\right)+B\left(w_{0}\right) \sin \left(w_{0} t\right)
\end{aligned}
$$

Substitute in (1) $=P$

$$
\begin{aligned}
& \text { Substitute in }(1)=P \\
& m\left(-A \omega_{0}^{2} \cos \omega_{0} t-B \omega_{0}^{2} \sin \omega_{0} t\right)+\left(-A C \omega_{0} \sin \omega_{0} t+\right. \\
& \left.+B C \omega_{0} \cos \omega_{0} t\right)+K\left(A \cos \omega_{0} t+B \sin \omega_{0} t\right)= \\
& F 0 \cos \omega_{0} t=D \\
& {\left[\left(K-m \omega_{0}^{2}\right) A+C B \omega_{0}\right] \cos \omega_{0} t+} \\
& {\left[\left(h-m \omega_{0}^{2}\right) B-C A \omega_{0}\right] \sin \omega_{0} t=F_{0} \cos \omega_{0} t(2)}
\end{aligned}
$$

$$
\begin{align*}
& \left(k-w w_{0}^{2}\right) A+C B w_{0}=F_{0} \tag{3}\\
& \left(H-m w_{0}^{2}\right) B-C A w_{0}=0 \tag{4}
\end{align*}
$$

